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Problem 19. (Fixed points)

(a) Show that Ord(x) if and only if Trans(x) and x is linearly ordered by ∈.

(b) Let F : Ord → Ord, F (α) = 2α (ordinal exponentiation). Show that

2ω = ω, i.e. ω is a fixed point of F .

(c) Show that every strictly increasing continuous function F : Ord → Ord

has arbitrarily large fixed points, i.e. if α < β → F (α) < F (β) for all

α, β ∈ Ord and F (λ) = supα<λ F (α) for all limits λ ∈ Ord, then ∀γ∃δ > γ

F (δ) = δ.

Problem 20. (Well-orders) A linearly ordered set (x,<) is well-ordered if every

non-empty y ⊆ x has a <-minimal element. Show:

(a) If (x,<) is a well-ordered set, then there is a unique ordinal α such that

(α,∈) and (x,<) are isomorphic. Use the recursion F (β) = min(x \
range(F � β)) for x \ range(F � β) 6= ∅.

(b) If (x,<x) and (y,<y) are both well-ordered, then the lexicographical prod-

uct (x × y,<lex) is well-ordered. We define (a, b) <lex (a′, b′) :↔ (a <x
a′) ∨ (a = a′ ∧ b <y b′).

(c) α · β is the order type of the lexicographical product of (β,∈) and (α,∈)

for α, β ∈ Ord.

Problem 21. (Hausdorff Maximality Principle) Show that in the theory ZF the

axiom of choice is equivalent to the Hausdorff Maximality Principle which says: for

every partial order (P,≤) ∈ V there is an inclusion maximal chain X in (P,≤), i.e.

X is a chain and if Y ⊇ X is a chain in (P,≤) then Y = X.

Problem 22. (Embedding into Q) Suppose γ is a countable ordinal. Show that

there is an order-preserving injection f : γ → Q, i.e. ∀α < β < γ f(α) < f(β).

There are 6 points for each problem. Please hand in your solutions on Monday,

November 19 before the lecture.


